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SUMMARY

In solution of the Euler equations in the steady state external �ows, error or residual waves are blamed
for decelerating the convergence. These waves may be damped by adding a bulk viscosity term to the
momentum equations. We analyse e�ects of this term on the linearized di�erential equations, and study
its explicit and implicit implementation in one and two space dimensions. Optimum values of the bulk
viscosity damping (BVD) are discussed. After generalization to two space dimensions, its performance
both alone and in combination with a soft wall boundary condition and residual smoothing in central
di�erencing codes is reviewed. It is shown that BVD is complementary to them, and acts independently
of them. Finally, application of BVD in solution of low Mach number �ows is considered, to show
how it can strongly stabilize and accelerate these low Mach number computations. Copyright ? 2003
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In two space dimensions, the time-dependent Euler equations are
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Here, � is density, u and v are velocity components, p is pressure, and E and H are to-
tal internal energy and total enthalpy, respectively. For u the vector of primitive variables,
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(�; u; v; p), simple wave solutions could be written in the form

u= u(x cos �+ y sin �− �t)
which indeed shows solutions which are constant on straight lines in ‘xy’ plane, moving with
characteristic speed � in the direction of its unit normal n=(cos �; sin �). The characteristic
surfaces are moving with corresponding speeds.
It is interesting to note that in numerical solution of the Euler equations for the steady

state problems (and many other �uid dynamics equations), the errors and the residuals of the
conserved variables are convected, dispersed and dissipated like a scalar quantity. Therefore,
it is natural to study the behaviour of these waves to develop any technique which involves
them, particularly in convergence acceleration methods. To do so, techniques were developed
to allow experimental study of the residual waves [1]. Video �lms were made which show
how the solution evolves. A simple �rst-order upwind scheme using local time-stepping on
a rather coarse structured grid was used to �nd the solution of the Euler equations around a
NACA0012 airfoil at M=0:63 and �=2◦. Contours of area-weighted residuals (Cell Area ×
|�t |) were found to be a very simple way for visualization of evolution of error waves. The
area weighting was used as a way of emphasizing the far �eld behaviour. The video revealed
very clearly that the path to convergence follows a simple, well-de�ned, repetitive pattern that
begins almost immediately. For the �rst cycles, there are minor variations, but after this each
cycle repeats the previous one very faithfully. A perfect correlation is maintained between
the timing of the residual waves, and the ‘beating’ in a conventional residual history (as in
Figure 9).
An additional observation, suggesting that acoustic behaviour is almost completely dom-

inant, comes from correlating the pressure and density residuals. For any purely acoustic
disturbance, one should �nd that

pt = a2�t (2)

In fact, one �nds that this equation holds to within 1% on average over the �ow �eld.
All of these observations are convincing evidence that acoustic waves are responsible for

an important part of the convergence process. After one basic cycle, i.e. the time required
for the residual waves to traverse once the computational �ow �eld (forward and backward,
from airfoil to the outer boundary, and reverse) the amplitude of the residual waves can be
expected to be reduced by a factor of something like

R=RfRoRi (3)

where Rf is the attenuation due to numerical dissipation (whether by accident or design) as the
waves traverse the �ow �eld twice, Ro is the attenuation when the waves re�ect from the outer
boundary, and Ri is the attenuation when the waves re�ect from the inner solid boundary. It
is believed that these facts should provoke a complete re-examination of boundary procedures
and numerical schemes. In Reference [1] work is conducted which is aimed at preventing the
regeneration of residuals by attenuating these continued re�ections at the other end of their
journey; that is, at the solid surface. In Reference [2] techniques are shown to decrease Ro.
An e�ective strategy to accelerate convergence of Euler solvers in solution of steady state

problems, is to damp the residual waves while they are traversing the �ow �eld. There are
several ways to do this, like residual smoothing [3], classic multigrid [4] or newer ideas
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as [5], which are nowadays the most popular convergence acceleration schemes. Precondi-
tioning schemes as [6] help damping residual waves by speeding up the slow running waves.
Here one systematic and very simple way is developed to do this. The idea generalizes one
presented by Ramshaw and Mousseau [7] for accelerating the convergence of incompressible
�ow calculations. They added an arti�cial bulk viscosity term to a code based on the arti�-
cial compressibility method introduced in 1967 by Chorin [8]. Apparently nobody has tried
to use this idea in genuinely compressible calculations. To do this, we have to take a slightly
non-physical approach, so that the added terms vanish in the steady state. In this paper we
construct an arti�cial bulk viscosity, which does vanish when required, and can be tuned to
damp out the error waves, based on the fact that the acoustic waves are primarily responsi-
ble for the slow convergence. Physically, the most direct way to damp these components of
the residual waves is by bulk viscosity damping (BVD). Thus it is natural to introduce an
arti�cial bulk viscosity to remove these waves from the �ow �eld.
In this paper we will �rst show why and how bulk viscosity a�ects our solution. Using

one dimensional analysis, stability criteria are developed for the newly introduced parameter,
and then BVD is applied in one-dimensional Euler equations, both explicitly and implicitly.
Generalization to two space dimensions follows readily, and it is shown that this method is
complementary to many other convergence accelerator schemes, including residual smooth-
ing [9] and soft wall boundary conditions [1]. The remarkable e�ect of BVD in acceleration
of Euler solvers in low subsonic regime is particularly studied at the end.

2. THEORY OF THE BULK VISCOSITY DAMPING (BVD)

The Navier Stokes momentum equation can be written as:

@
@t
(�u) + div(�u : u)=∇ ·T

where the stress tensor T includes three terms:

T=−p�ij + � div(u)�ij + 2��ij (4)

Here, u is the velocity vector, � and � are, respectively, the bulk viscosity and the shear
viscosity coe�cients, and body forces are neglected. � is the strain rate tensor. The bulk
viscosity is the part of the viscous stress which is proportional to the divergence of the
velocity. For positive �, bulk viscosity increases the internal energy proportional to (div(u))2

and dissipates the acoustic waves.
For incompressible �ow the velocity divergence vanishes in the steady state, and adding

an arti�cial term proportional to it will leave the steady state unchanged. This was the ap-
proach taken in Reference [7]. For compressible �ow, a similar e�ect can be achieved using
the divergence of �u, that is to say, −�t . This also makes the dissipation of error waves
proportional to square of their magnitudes.
For computation with the inviscid equations, we use

T=−(p+ aol�t)�ij (5)
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where ao is the reference sound speed and l is an arti�cial bulk viscosity coe�cient with
the dimension of length. This constant needs to be determined by design criteria, or stability
restrictions (found by analysis, or empirically).
To analyse the e�ect of the new term, the linearized Euler equations (i.e. acoustic equa-

tions) in one space dimension are considered �rst. After adding the new term we have:

�t + �oux =0

ut +
1
�o
px +

aol
�o
�xt =0 (6)

pt + �oa2oux =0

Let us require simple wave solutions of the form:

u=Re(U ) exp i(!t − �x)
for the vector of primitive variables u, where ! is complex frequency, and � is the wave
number. Here, Im(�)=0, in order to have bounded solutions for large x, but !=!r + i!i.
Substitution of this form of solution in the above equations, and requiring non-trivial solutions,
yields the dispersion relation.
After some algebra one �nds two di�erent cases:

• !r =0, and

!il
ao
=(l�)2


1
2
±
√
1
4
−
(
1
l�

)2
which is only valid for (l�)2¿4.

• !i= 1
2aol�

2, and

!r
�ao

= ±
√
1−

(
l�
2

)2

for (l�)2¡4.

The variation of non-dimensionalized wave speeds !r=�a0 and damping e−!il=ao for di�erent
wave numbers are plotted in Figure 1. Figure 1(a) shows that high frequencies are heavily
damped. Figure 1(b) shows that on the di�erential level the high frequencies are not allowed
to propagate at all, which is in a sense an advantage, since then one will not be worried about
their re�ections from the boundaries, and their movements forward and backward in the �ow
�eld. At the same time, the advantage of convecting them out of the �ow �eld is lost.
To see e�ects of the new term on the stability, we consider the following system of

equations:

ut +
1
�o
px = aoluxx

pt + �oa2oux =0
(7)
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Figure 1. (a) Damping (e−!il=ao) and (b) wave speed (!r=�ao) for di�erent wave numbers l�.

Analytically, these have the same dispersion relationship (apart from a non-propagating factor)
as (6). One can write the equations in the characteristic form. Using central di�erencing for
second order derivatives, and upwind di�erencing for the others, and assuming solutions of
the form unj =Uo exp i(n�+j	) one �nds the discrete ampli�cation matrix. If 
 is the Courant
number, to have bounded solutions we restrict eigen values of the ampli�cation matrix and
�nd

l
�x

6
(
1− 

2


)
(8)

Thus for a simple explicit discretization, the coe�cient l cannot be large compared with the
mesh size. This is natural, since we have added a parabolic term to the equations. In practice,
as will be seen in the next sections, the stability margin on practical stencils is slightly wider
than what this estimate suggests. If the pressure gradient term in the acoustic Equations (6)
is neglected, one gets

ut = laouxx (9)

which is of parabolic nature. This shows that the added term acts like a singular perturbation
of the original hyperbolic equations, and generates sti�ness in the equations.

3. APPLICATION IN ONE SPACE DIMENSION

3.1. Explicit computations

After application of the above modi�cations to Equations (1), the resulting equations are

�
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Indeed similar terms could also be added to the energy equation. However, the order analysis
shows that this term will be proportional to l2, so in explicit computations, where l≈�x this
term will be of higher order, and will not a�ect the solution.
The numerical method used here is an explicit upwind method (Extension to central dif-

ferencing schemes follows in Section 5). The update procedure for the momentum equation
will be slightly di�erent:

(�u)n+1j =(�u)nj −
�t
�x

(F?
n

2; j+1=2 + F
?n
2; j−1=2)− lao

(�t)nj+1 − (�t)nj−1
2�x

where

(�t)nj =−F
?n
1; j+1=2 + F

?n
1; j−1=2

�x

and F?
n

2; j+1=2 is the second element of the �ux vector, evaluated at the interface of cells j and
j+1 at time step n (here computed using the Roe averages, but any good �ux formula could
be used). This seems to be the simplest way to create a discretization that is conservative,
and for which the added terms vanish in the steady state. However, the stencil is e�ectively
extended to �ve cells by the form of the BVD term. This appears to enlarge the stability
margins found in the previous section. The boundary conditions for the extra term are applied
using ghost cells, and �t in the ghost cells is chosen to be zero.
To see the e�ect of the new term on the evolution of the solution in the �ow �eld,

computations are done in a pressure tube. Assume 0¡x¡1 and t¿0. Solid walls are assumed
at both ends. For the initial condition, the �uid is assumed to be still everywhere, with uniform
density �o, and with Gaussian distribution for pressure:

u=0 �=�o p=po(1 + �e−	(x−0:5)
2
)

where 	 is a constant of order 100. � is a constant equal to 0.1 or 1.0 which determines
the strength of the initial pressure disturbance. Choosing �=1:0 will allow non-linear waves
be generated in the �ow �eld, which will collapse in a very strong shock wave. Using
a global time-stepping procedure, Figure 2 shows the wave evolutions for �=0:1, which is
weak enough to stay linear, with no bulk viscosity. The horizontal axis is the space dimension,
0¡x¡1, and the vertical axis is time. The curves shown are pressure distributions at di�erent
times; the lower curve is the initial condition.
In Figure 2 the (almost perfect) re�ection of the right and left-going waves at the solid

wall can be observed. This �gure shows that although a �rst-order dissipative method is used,
the waves will bounce back and forth several times, before being dissipated in the �ow �eld.
Figure 3 shows how the smooth waves are dissipated fairly e�ectively in the �rst period of
their movement, after addition of slight bulk viscosity with l=�x=2. With this value of l,
the regular explicit time step for the unmodi�ed problem could be used.
To see how everything works at a non-linear level, an initial pressure distribution with

high amplitude (i.e. �=1) is used. Figure 4 shows that in absence of bulk viscosity damping,
strong shock waves are generated. Again, even in our �rst-order upwind code, shocks will
move forward and backward for many cycles, before they are suitably damped.
Figure 5 shows that addition of small bulk viscosity (l=�x=2) (small enough to keep the

same time-steps stable) not only prohibits the shock from being generated, but also dissipates
the wave as well before it accomplishes its �rst round trip. The amount of extra computation
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Figure 2. Linear wave evolution by original Euler equations.
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Figure 3. Linear wave evolution by modi�ed Euler equations, with l=�x=0:5.

in both linear and non-linear case is the same and, in the above mentioned code, it’s quite
negligible (≈ 1%). Larger values of l, although more e�ective in damping, require substantial
decrease in the time-steps.
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Figure 4. Non-linear wave evolution by the original Euler equations.
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Figure 5. Non-linear wave evolution by the modi�ed Euler equations. Here l=�x=0:5.

3.2. Implicit computations

To cure the sti�ness generated by the new term, one needs to introduce some level of implicit
evaluation to make high values of damping possible. Since the troublesome term appears only
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in the momentum equation, only this equation needs to be treated implicitly. To do so, one
�nds it convenient to substitute for �t in the momentum equation with −(�u)x. The modi�ed
momentum equation is then:

(�u)t + (p+ �u2)x − lao(�u)xx=0
and its update formula is then:

(�u)n+1j =(�u)nj −
�t
�x

(F?
n

2; j+1=2 + F
?n
2; j−1=2)− lao

�t
�x2

((�u)n+1j+1 − 2(�u)n+1j + (�u)n+1j−1)

The last term (damping term) may not always vanish identically in the steady state. However,
some loss of this desirable property seems to be inescapable with any conveniently imple-
mented implicit scheme. In each time step, �rst (�)n and (�E)n is explicitly updated as usual,
and then the discretized momentum equation is solved. The momentum equation results in an
N × N tridiagonal system, where the diagonal terms are (1 + 2	), the o�-diagonal terms are
−	, and

	=
lao�t
�x2

¿0

Boundary conditions for the new term requires a value of �u at ghost cells, which are triv-
ial for the solid wall boundary. For other boundary conditions one may use the fact that
(�u)xx=−(�t)x and

�t =
�n+1j − �nj
�t

which gives the alternative form

(�u)xx|n+1j =− (�t)j+1 + (�t)j−1
2�x

The unknowns are (�u)n+1j , and the right-hand side vector of the system is


· · ·+ 	(�u)no
· · ·

(�u)nj − �t
�x (F

?n
2; j+1=2 + F

?n
2;j−1=2)

· · ·
· · ·+ 	(�u)nN+1




Note that the system is diagonally dominant, and can be e�ciently solved by standard
tri-diagonal solvers. The amount of extra work for solving this system is hardly
visible.
Similar experiments to Section 3.1 are done to see by how much it is worth increasing this

damping term. Figure 6 shows the linear wave (i.e. wave with small initial amplitude), with
bulk viscosity corresponding to l=�x=25. For this data, the analysis of Section 2 predicts
that any value of l greater than about 6�x will result in very little wave propagation, and
mostly static dissipation will happen. This is the e�ect seen in Figure 6. For high amplitude

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:633–652



642 K. MAZAHERI AND P. L. ROE

0.0 0.2 0.4 0.6 0.8 1.0
x

p 
(x

)

Figure 6. Linear wave evolution by modi�ed Euler equations, l
�x =25.

waves, this linear analysis is not reliable. Experimentally, it seems that there is indeed little
propagation, and that damping is rather slow. There is some disadvantage in not allowing the
waves to get to the outer boundary, where a non-re�ecting boundary condition could have
helped to expel them. Figures 7 and 8 illustrate this. Later, our two-dimensional experiments
will con�rm that l should not in fact be taken too large.

4. GENERALIZATION TO TWO SPACE DIMENSIONS

4.1. Explicit computations
The modi�ed momentum equations are:

(�u)t + (p+ �u2)x + (�uv)y =−lao�xt
(�v)t + (�uv)x + (p+ �v2)y =−lao�yt

(10)

The other equations retain their original form.
We integrate Equations (10) over one numerical cell, and apply Green’s theorem to get

(�u)n+1ij = (�u)nij −
�t
A

∑
F?2n�S − �t:l:ao

A

∮
cell faces

(�t) dy

(�v)n+1ij = (�v)nij −
�t
A

∑
F?3n�S +

�t:l:ao
A

∮
cell faces

(�t) dx

(11)
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Figure 7. Non-linear wave evolution by modi�ed Euler equations, l
�x =25.
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Figure 8. Non-linear wave evolution by modi�ed Euler equations, l
�x =100.

Here F?2n and F
?
3n are second and third entries of the normal �ux vector, computed using

upwind or central di�erencing schemes.
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Figure 9. History of evolution of the residual 1
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∑
log10 ‖�t‖ for di�erent values of l

�x , showing the
e�ect of adding bulk viscosity to a 1st-order upwind code.

One inexpensive way to evaluate �t on the cell faces (for the line integral) is to take the
average of the adjacent cells, to get:∮

cell faces
(�t) dy= (�t)i+1; j�yi+1=2; j + (�t)i; j+1�yi; j+1=2 + (�t)i−1; j�yi−1=2; j

+(�t)i; j−1�yi; j−1=2

(12)

and a similar equation is found for y-momentum equation. To ensure stability, analogy with
the one-dimensional case suggests that for explicit calculation, the value of l should be pro-
portional to a local length scale, say, the average side length of the cell concerned.
Let us use the standard NACA0012 airfoil problem, for M=0:63 and two degrees angle

of attack. As a stable platform to test our modi�cations, �rst we use a �rst order upwind
scheme. The surface boundary condition is the usual solid wall condition. The outer boundary
is applied using the far �eld vortex solution. For the boundary condition for the new term,
residuals are assumed to be zero in the ghost cells.
In Figure 9 the residual history for the original (non-viscous) code (solid line), and the

code involving arti�cial bulk viscosity (dotted line) are compared. The history of the lift
coe�cient, for the same two codes, shows that the addition of bulk viscosity weakens the
strong traversing waves. We ran experiments with much larger values of l, for which smaller
timesteps were needed. This was to see whether an implicit code would be worth developing.
The convergence history was plotted against a ‘pseudo iteration number’

N ∗=N × ‘inviscid’ timestep
actual timestep
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Figure 10. History of evolution of the residual 1
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If the convergence had continued to improve on this basis, there would have been hope that an
implicit code would have produced a similar history. In fact, Figure 10 shows that increasing
the bulk viscosity is not always helpful. As in one space dimension, it seems that large values
of bulk viscosity slow down the movement of the waves through the �ow �eld, so that the
basic mechanism of wave removal across the outer boundary is lost. In fact, there is always
an optimum value of damping which maximize the convergence rate, and this value is usu-
ally upper but fairly close to the value of explicit implementation. Video movies showing the
spatial distribution of the residuals show that using large values of l does damp out the waves
during the early stages, but that a static pattern then develops that is very slow to disappear.

4.2. Implicit computations

To make higher values of bulk viscosity coe�cients possible, implicit formulation of the
momentum equations is necessary. The bulk viscosity components can be written in terms of
�un+1ij and �vn+1ij in many di�erent ways, two of which are considered here [2].
In the �rst method, the average value of �t in each face is found using continuity equa-

tion and Green’s integral theorem on a suitable control volume in a three by three stencil
around each cell. Finally this produces a system of linear equations very similar to a block-
pentadiagonal system, which cannot be solved directly in O(n) time. The alternative is to use
iterative methods, or ADI, the latter has been used here. Figure 11 shows the results of this
method. Here the time-steps are determined only by CFL condition, and the code is stable
for all values of l, but its time complexity constant (i.e. cpu time per iteration) is about
25% higher than the original code. One major problem here is that the BVD terms in the
momentum equations (although very small) may not vanish in steady state.
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Figure 11. Residuals histories for di�erent BVD coe�cients resulting from the �rst implicit method.

In the second method, the following observation is made:

(�xt)n+1 = (�xt)n +�t(�xt)t + O(�t2)= (�xt)n −�t{(�u)x + (�v)y}xt + · · ·
= (�xt)n −�t[((�u)t)xx + ((�v)t)xy] + · · ·

Then, Equations (10) can be rewritten correspondingly. Linearization of these equations and
considering simple wave solution of them, shows that the new system is just a regular per-
turbation of the previous system, and for small time steps, it should resolve similar features
as the original formulation of the bulk viscosity [2]. A method is introduced to implicitly
discretize these equations. It �nally reduces to a system of linear equations somehow similar
to the �rst method, and �nally produces fairly similar results (as Figure 11). The main ad-
vantage of this second method is that at steady state all the newly introduced terms vanishes
(also con�rmed experimentally).However, this time one cannot increase the BVD coe�cient
that much, and therefore the overall increase in convergence rate is not signi�cant.

5. COMPARISON TO AND COMBINATION WITH OTHER TECHNIQUES

5.1. Residual smoothing

The maximum permissible time step for explicit calculation of Euler equations (before addition
of BVD terms) is restricted by the stability limit on the Courant number. It was observed by
Jameson [9] that this restriction can be relaxed by replacing the residual at each point by a
weighted average of the neighbouring residuals. Consider a system of equations in one space
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Figure 12. Comparison of residual history for di�erent values of BVD in a central-di�erencing code.

dimension:

ut + fx=0 R(u)=−fx
where u; f ∈Rn, and R(u) is the vector of residuals. Residual smoothing consists of replacing
R by a smoothed value �R, de�ned either explicitly by:

�R=(1 + �x�2x )R

or implicitly by
(1− �x�2x ) �R=R (13)

where �x is the central di�erence operator in the x-direction, and �x is the corresponding
smoothing parameter. In two space dimensions, one may just add another term (�y�2y) inside
the parentheses. The best convergence rate of course depends upon the choice for the smooth-
ing parameter. In practice the best convergence rate may be found by using Equation (13)
and time-steps about three times larger than the Courant number of non-smoothed scheme,
taking the smoothing parameter as large as possible while maintaining stability [9].
Performing this smoothing at the di�erential equation level for the one-dimensional acoustic

equations gives

�t + �oux = ��txx (14)

ut +
1
�o
px = �utxx (15)

pt + �oa2oux = �ptxx (16)
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Figure 13. Combinations of the SWBC (with �=100�t, �=0:5), BVD (with l=1:3�S), and RS (with

=2, �=0:2) in the central-di�erencing code, at M=0:63.

This changes the dispersion relationship to give

!r
�ao

=
±1√
1 + ��2

(17)

with !i=0. This shows that residual smoothing works by decreasing the propagation speed,
and does not, at the di�erential equation level, introduce damping at all. It can also be seen
that it is chie�y e�ective at high frequencies. Since BVD does introduce damping, even at
relatively low frequencies, it is expected that the two techniques will be complementary.
Experience shows that implicit implementation of RS is more e�ective. To implement RS

in two space dimensions, using approximate factorization we write the 2D modi�ed form of
Equation (13) as

(1− ��2x )(1− ��2y) �Rij=Rij
and then we solve consecutively two tri-diagonal systems, generated from equations

(1− ��2x )Qij=Rn+1ij and (1− ��2y) �R
n+1
ij =Qij

with appropriate boundary conditions. Applications of RS for solution of the previous external
�ow around NACA0012 airfoil, using a fairly coarse structured mesh with values of 
=2:0
and �=0:2, produces about 35% savings in total CPU time, and the residual history is very
close to either dashed line in Figure 13(left).

5.2. Soft wall boundary conditions (SWBC)

In Reference [10] the idea was proposed of replacing the standard solid wall boundary condi-
tions by something that allows incoming waves to be re�ected with reduced amplitudes, over
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an extended time. Such a condition can be written as

ut +
u
�
=
�
�a
pt

where �, � are parameters to be chosen from within certain not very critical ranges. In this
work, we have used �=0:5 and �=50�t for solution of inviscid �ow around a NACA0012
airfoil, at Mach 0.63, using a fairly coarse structured mesh. The numerical implementation is
explained in Reference [2], and gains of up to 40% are found for subcritical �ows (compare
dashed and solid lines in Figure 13).

5.3. Combination of schemes in a central-di�erencing code

First we study the e�ect of adding BVD alone to a well established central di�erencing
code. For the details of the central di�erencing code used here see References [11, 3]. We
use the same standard NACA0012 airfoil problem as previously. Figure 12 compares the
residual history for di�erent values of bulk viscosity coe�cient, added explicitly. It was found
experimentally that the code is stable for values of l up to 1.3. The speedup due to BVD
appears to be rather greater in this case than in our previous experiments with the upwind
code. Presumably this is because we are dealing here with a second-order code, the regular
form of which has less natural dissipation. The lift coe�cient also converges very smoothly
and very quickly to the correct steady state solution.
Figure 13 (left), shows the e�ect of combining BVD with the soft-wall BC. As compared

with the basic method, if we require a four order of magnitude decrease in the value of
the L1 norm of residual, either modi�cation by itself cuts the iterations to about 60% of the
number originally required. In combination, the gains are multiplied, and only about 35% of
the original iterations are needed. Combination of soft wall BC and RS is shown in Figure 13
(right, small dashed line), which is very similar to combination of soft wall BC and BVD
(Figure 13 (left, dotted line)) and combination of BVD and RS (not shown here). We repeat
that each modi�cation adds negligible overhead to the time per iteration.
Finally Figure 13 (right, dotted line) shows the e�ect of combining all three acceleration

methods. Now, only about 20% of the original iterations are required, and the overhead
remains less than 5%. This plot con�rms that bulk viscosity acts quite independently from
other convergence acceleration schemes, with little overhead in CPU time per iteration.

6. LOW AND HIGH MACH NUMBERS

Central-di�erencing codes have generally been found to converge rather slowly for low Mach
numbers. We discovered that adding a little BVD in explicit form not only makes the process
very smooth and well-behaved, but also increases the convergence rate very signi�cantly. To
see the e�ect of BVD in low Mach number performance of central di�erencing codes, the same
NACA0012 airfoil problem is used. In a Mach 0.3 case, CD codes with residual smoothing
have di�culty in converging. Figure 14(a) shows the residual history for this airfoil problem.
The number of iterations in this case is reduced by about 80% by BVD alone. It is interesting
that the convergence plot is also far less ‘noisy’. Figure 14(b) shows the time evolution of
the lift coe�cient for this computation. Here the oscillatory curve (solid line) corresponds
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Figure 14. E�ect of BVD combined with RS (
=2 and �=0:275) in low Mach number �ow M=0:3,
(a) residual history and (b) lift coe�cient history.
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Figure 15. E�ect of BVD combined with RS on the residual history for M=0:01.

to the computation without BVD, and the smooth curve (dashed line) corresponds to adding
BVD with bulk viscosity damping coe�cient of l=1:2�S.
In the most extreme case, for Mach number M=0:01, the regular code was unable to

produce a converged solution, as shown in Figure 15. The solid line shows application of the
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CD code with residual smoothing �=0:2 and the Courant number 
=2:0. The residual was
reduced by about two orders of magnitude after 250 iterations, but then started to diverge.
After explicitly adding a little BVD (l=1:0�S), the convergence is accelerated signi�cantly
in its �rst stages of computation, and the whole code is stabilized even for low values of
residuals, and smooth convergence is achieved. A similar trend could be seen in the lift
coe�cient evolution curve.
Unfortunately, the bulk viscosity method turns out to be rather ine�ective in transonic �ow.

In the best case the improvement is only just detectable, and in the worst case convergence is
stalled. We believe that this can be explained in terms of the insights into convergence gained
from the experiments reported in Reference [1]. The mechanism of convergence seems to be
greatly altered by the presence of embedded shocks. On the one hand, these often absorb the
wandering acoustic waves themselves, leaving little for BVD to accomplish. However, the
shocks may be very slow to �nd their own �nal equilibrium positions, and this is usually
the determining factor as regards transonic convergence. It seems to us that quite a di�erent
acceleration device is required in this case.

7. CONCLUSIONS

Bulk viscosity damping has been introduced, analysed, and applied to the Euler equations in
one and two space dimensions. It was shown that BVD can be added as a simple module
to most current codes written for subsonic compressible �ows, and with no signi�cant extra
computation the rate of convergence can be increased signi�cantly. The best value for the
characteristic length required seems to be close to the local mesh size. With this choice,
the time step of the regular inviscid code can be retained, or even increased if residual
smoothing is employed. Larger values require elaborate implicit methods that do not pay
o�. With a simple explicit scheme, we have found gains of between 40 and 80%; the gains
are most pronounced at low Mach numbers. The method complements very well other tech-
niques for convergence acceleration. We have found that combining it with residual smooth-
ing and a soft wall boundary condition is particularly e�ective, and carries an extremely low
overhead.
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